Capabilities of Asymmetrical Flow Field-Flow Fractionation coupled with MALS for the Detection of Carbon Nanotubes in Soot and Soil

Alexander Gogos ^(a,c), Ralf Kaegi ^(b), Renato Zenobi ^(c), Thomas D. Bucheli ^(a) ^(a) Agroscope, 8046 Zürich, CH; ^(b) EAWAG, 8600 Dübendorf, CH; ^(c) ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, CH

General Information

Application	Environmental
Technology	AF4-UV-MALS
Info	Postnova AF2000 MT, PN3621 MALS, PN3241 UV-Vis/DAD
Keywords	Asymmetrical Flow Field-Flow Fractionation, Multi Angle Light Scattering, Carbon Nanotubes, Shape Factor

Introduction

Methods to characterize and quantify Multi-Walled Carbon Nanotubes (MWCNTs) from soil samples are still scarcely available to date. Quantification – depending on the used method – may be biased by soot ubiquitously present in soils and sediments. Differentiating between MWCNTs and soot is a big challenge as they are physically and chemically very similar, e.g. in terms of thermal stability or density.

Shape could however be a contrasting parameter for the detection of MWCNTs in pure soot or even soil. Therefore, we evaluated a shape factor ρ , derived from AF4-MALS measurements, for its capabilities to detect MWCNTs in these matrices [1].

Detection of MWCNTs in Soot

We used differently shaped particles (MWCNTs, soot, native soil particles) to depict the shape differentiation capabilities of AF4-MALS. The method used shall be addressed briefly: samples (particle powder, dry soil) were dispersed in 2 % Sodium deoxy-cholate/0.05% Sodium azide, sonicated and centrifuged at 17.500 g for 10 min. The supernatant half of the volume was then used as a working suspension. As an AF4 carrier, 10^{-5} M Ammonium nitrate/0.02% Sodium azide was used. For determination of the hydrodynamic radius (r_h) we used retention time calibration with different certified latex standards. The radius of gyration (r_g) was determined using the PN3621 21-angle MALS detector. Both parameters were combined to give a shape factor $\rho = r_g/r_h$ Soot showed a relatively homogeneous ρ -distribution over the peak area (Fig.1) with average values of approx. 0.9. This was expected as the soot dispersions consisted of fractal-like aggregates that deviated from spherical shape ($\rho > 0.775$). Once MWCNTs were added, ρ showed an increase that was concentration dependent. These results could be confirmed using automated electron microscopy and image analysis (see Gogos et al. 2014).

Figure 1: Fractograms obtained by AF4-MALS with shape factor ρ (symbols) for equal mass injections (5 μ g) of a pristine long MWCNT, soot and a 1:1 mixture of both. Lines show the 92° MALS signal of pure soot (solid) and pure MWCNT (dashed).

info@postnova.com www.postnova.com Postnova Analytics GmbH 86899 Landsberg, GERMANY T: +49 8191 985 688 0 Postnova Analytics UK Ltd. Worcestershire, WR14 3SZ, UK T: +44 1684 585167

Postnova Analytics Inc. Salt Lake City, UT 84102, USA T: +1 801 521 2004 Postnova Northern Europe 01630 Vantaa, FINLAND T: +358 9 8545 510

ID0037

Detection of MWCNTs in Soil

Native soil showed ρ -distributions comparable to soot (approx. 0.9, Fig. 2). Again, addition of MWCNT increased the resulting ρ values in a concentration dependent manner. Resulting method detection limits for MWCNTs in soils were in the order of 1.6 to 4 mg g⁻¹.

Figure 2: Fractograms obtained by AF4-MALS with shape factor ρ (symbols) of standard additions of a MWCNT to soil. Lines show the 92° MALS signal of native soil (solid) and soil + 16 mg g⁻¹ MWCNT (dashed).

Conclusion

- Generation of a shape factor ρ from r_{q} and r_{h} values over time enables differentiation of MWCNTs and soot.
- Shape factor increment is dependent on the ratio between MWCNTs and soot in a mixture, i.e. ρ is concentration dependent.
 Soil particles extracted by the presented method are contrasting to MWCNTs in terms of ρ, allowing specific detection of MWCNTs in these complex matrices.
- Detection limits are still much higher than any currently predicted environmental concentration.

References

[1] Gogos, A., Kaegi, R., Zenobi, R. and Bucheli, T. D., Environmental Science: Nano, 2014, 6(1), 584-594.

info@postnova.com www.postnova.com Postnova Analytics GmbH 86899 Landsberg, GERMANY T: +49 8191 985 688 0 Postnova Analytics UK Ltd. Worcestershire, WR14 3SZ, UK T: +44 1684 585167 Postnova Analytics Inc. Salt Lake City, UT 84102, USA T: +1 801 521 2004 Postnova Northern Europe 01630 Vantaa, FINLAND T: +358 9 8545 510